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Note that this lemma implies that Ilull. < C. 

Corollary 2.5. We have 
(a) ju.(1, Y)? < Ce-1 for 0 < y <, 

(b) Jux(0, y)l < C for 0 < y <1. 

Proof. (a) Use 

IUX(1, A |lim u(x y) - u(1, y) | 

<lmC(1 - e-2a(l(x)/e) -1 
_ 

-Ce 1 I x4 1 -e 2j1x)1 

(b) Similarly, 

Iu X(0 A) = lim u(x ' Y) (O 5 Y) |< C. 
x--+O X 

Lemma 2.6. The following estimates hold: 

(a) lux(x, y) ? C( 1 + e-aeal(l-x)/6) on Q 

(b) luy(x, y)l ? C(1 + 8-le-a2(1-Y)/C) on Q 

Proof. (a) We have L(ux) = fx - (ao)xu, since a is constant. Consider the 

barrier function O(x, y) = C(1 +ele al(11x)/); then 

L(O ? ux)(x, y) = Ca0(1 + -1e-aI(l-x)l) ? (fx - (a0)xu) > 0 

for C sufficiently large. Since u -- 0 on OQ, ux(x, 0) = ux(x, 1) = 0 for 

0 < x < 1. Using Corollary 2.5, we obtain (t ? ux)(x, y) > 0 on OQ. Now 

apply Lemma 2.3 to obtain IuxI < 0 on 
(b) follows similarly. o 

Lemma 2.7. There holds 

(a) I - euxx + a1ul x< C on Q, 
(b) I - euyy + a2uyl < C on Q. 

Proof. (a) Let w - -eu,x + a1 U . On the two sides y = 0 and y = 1 of Q, 

w _ 0. On the other sides x = 0 and x = I of Q, uyy = uy = u = 0. Thus 

from Lu = f and Theorem 2.1, we get w = f on this pair of sides. Hence 

IwI < C on OQ. From Theorem 2.1, w E C? a(Q) nC2,a(Q), so we can apply 

Lemma 2.3 to w. We have 

Lw= - 8,w + a1wx + a2wy+ aow 

- e(Lu)xx + a1 (Lu)x + e(a0)xxu + 2e(ao)xux - a, (ao)xu 

= - 8fX + alfx + e[(ao)xxu + 2(ao)xux] - al(ao)xu. 

Hence, ILw < C, using Lemma 2.6 and IuI < C. Use the barrier function 
= C to finish (note that ao > 0). 
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a = -1, b = 1, w(x) = (1 - x)a(l + x)3, where a > -1, /8 > -1. The idea is to 
expandf(x) in series of polynomials qn(x) which are orthogonal over the interval of 
integration with respect to the weight function w(x). Then forms for evaluating 
G(9) readily follow by invoking orthogonality. There are two such expansions for 
f(x). One is an infinite series which follows from the usual orthogonality property. 
The other is a polynomial approximation plus a remainder. Relations between the 
coefficients in these representations have been given by Luke [6]. See also Luke, 
Ting and Kemp [7]. These data are then employed to assess the error in the finite 
series approximation. Other properties and techniques pertinent to the computa- 
tional process are developed. It calls for remark that we could also consider the 
situation where ejOx is expressed as a finite sum of the polynomials qn(x) plus a 
remainder. However, this is not done, for in most applications the infinite series 
expansion in the polynomials qn(x) is easily obtained. 

In Section 2 we set down some basic equations for orthogonal polynomials 
needed in our work and give two formulas for the evaluation of (1.2). In Section 3 
we apply the general scheme of Section 2 to the situation where the pertinent 
orthogonal polynomials are those of Jacobi. In Section 4 we give a numerical 
example to illustrate the effectiveness of the schemes developed. In Section 5 we 
discuss some other methods for the computation of (1.2) developed by Bakhvalov 
and Vasileva [8], Piessens and Poleunis [9], Patterson [10], and Littlewood and 
Zakian [11]. In Section 6 we consider the situation where the range of integration is 
infinite and the orthogonal polynomials are those of Laguerre and Hermite. 

2. Orthogonal Polynomials and the Evaluation of Oscillatory Integrals with Singu- 
larities. In this section we first set down some well-known results from the theory of 
orthogonal polynomials needed in our work. Let 

n 

(2.1) qn(x) = E ak,lX' 
k =0 

be a set of polynomials orthogonal over the interval [a, b] with respect to the 
nonnegative weight function w(x), w(x) > 0, so that fb 
(2.2) w(x)qm(x)qn(x) dx = hn8mn, 

a 

where 6mn is the usual notation for the Kronecker delta function. That is, 

(2.3) 6,n =1 if m = n, m = if m # n. 

The polynomials qn(x) satisfy the three-term recurrence relation 

(2.4) qn,,(x) = (AnX + Bn)qn(x) - Cnqn-(X), n > 0, 

(2.5) qI(x) = (Aox + BO) qo(x), 

where 

A A Anhl n > 0; 

(2.6) 

Bn = An(r+ 
- 

-r); = ,n n > 0, r = 0. 
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We suppose that f(x) can be expanded in a series of orthogonal polynomials 
{q"(x)) which is uniformly convergent in [a, b]. Thus 

00 

(2.7) f(x) = I Ckqk(X), 
k=O 

(2.8) Ck = hklf w(x)qk(x)f(x) dx. 

Let fn(x) be the Lagrangian interpolating polynomial to f(x) of degree n with 
nodes at the zeros of qn+1(x), i.e., f(xr) = n(xr), q"+1(x,) = 0, r = 0, 1, 2, . .. , n. It 
can be shown that 

n 

(2.9) fn(X) = k,nqk(X) 
k=O 

(2.10) dk,fl hk r=O n(Xr) 

and the connection between the coefficients Ck and dk,n is given by 
00 

(2. 11 ) dk,n = Ck + I: C2n+2+s-k Vn+2+s-k,k, 
s=O 

where 

A~ h n qj (xr) qk( Xr) 
(2.12) , k h =O q'1(r )q (xr) qqx1+(xr) 

= 0, r = 0, 1, 2, ... n, 

and 

(2.13) VJ(,k)J=2 k for] S n, k < n. 

We point out that the formula for dk,n is the Gaussian quadrature formula of the 
integral representation for Ck. In Gaussian quadrature, it is known that the 
coefficients of f(xr) must be positive. In particular, since An can always be taken as 
positive, we must have qn+ (xr)qn(xr) positive. The orthogonality relation (2.13) can 
be deduced from the Gaussian quadrature formula just noted. For details and 
further properties of Vj(k), including a recursion formula, see Luke [6]. 

After the manner of proof for the convergence of Gauss quadrature, see Davis 
and Rabinowitz [12], it can be shown that if Ck and dk,n are defined as in (2.8) and 
(2.11), respectively, then, for k fixed, 

lim dk,n = Ck. 

The error in approximatingf(x) byfn(x) is given by 

Rn+ l(x) = f(x) - f(x) = c"+ lqn+ 1(x) + cn+2[ qn+2(x) + C"+ lq(x)] 

+Cn + 3 [qn +3(X) + nA nA h+ qn _ l(x) 

(2.14) 

-C ( An+2B73 - B )q (x)l 
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or 

(2.15) R+,l(x) = c"+lqn+l(x)[ l + A x + B++l) + ** 

In practice (2.14) and (2.15) can be advantageous, for even though the ck's may be 
difficult to evaluate, asymptotic estimates are often available, see Donaldson and 
Elliott [13], and these can be used to appraise the remainder. In this instance only 
the first term or possibly first two terms of these equations can be used, at best, 
unless rather precise knowledge of the remainders in the asymptotic formulas for ck 
are known. 

We now present two schemes for the evaluation of 
Jb 

(2.16) G(O) = w(x)eiGxf(x) dx, 

where a and b are finite. We suppose thatf(x) is analytic in [a, b]. Assume first that 
f(x) can be expanded in an infinite series of orthogonal polynomials {qn(x)} which 
is uniformly convergent in [a, b]. Here w(x) is the weight function associated with 
the orthogonal polynomials {qn(x)). Thus w(x) is positive and integrable in [a, b] 
and encompasses the singularities of integrand in (2.16). The pertinent expansion 
formula forf(x) has already been given by (2.7). Put the latter in (2.16). Then 

00 

(2.17) G(O) = 2 ckhkbk(0), 
k =O 

(2.18) hkbk(O) = w(x)qk(x)eiGX dx. 

It should be noted that bk(O) is simply the coefficient of qk(x) in the expansion 
00 

(2.19) e @ = E bk(O)qk(X). 
k=O 

For a finite series approximation to G(9), consider 

(2.20) Gn(9) = b 
w(x)eiGxfn(x) dx, 

where fn(x) is the approximation to f(x) given by (2.9), (2.10). Put the latter in 
(2.20). Then 

n 

(2.21) GM(9) = E dk,nhkbk(O). 
k=O 

In (2.17) and (2.21), the quantities ckhk, dk nhk, and bk(O) depend on the 
orthogonal polynomials, but aside from this, Ckhk and dkfnhk depend only on f(x) 
while bk(O) depends only on 9. This is advantageous, for the convergence of (2.17) 
can be satisfactory if only at least one of the quantities ckhk or bk(O) decreases with 
sufficient rapidity as k increases. Similar remarks hold for (2.21). 

It is clear that (2.21) is exact if f(x) is a polynomial of degree < n. We now prove 
that Gn(9) converges to G(9) as n -> oo. 

THEOREM 1. Iff(x) is analytic on the finite interval [a, b], then 

(2.22) lim Gn(9) = G(9). 
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This is an easy consequence of a known result concerning the uniform conver- 
gence of the interpolating polynomials (based on zeros of orthogonal polynomials) 
in the case of functions f(x) analytic on [a, b]; see, e.g., Freud [15, Theorem 8.1]. 
Using this theorem, we have 

IG(O) - Gn(9)I =fb w(x)elGx(f(x) - fn(x)) dx 

(2.23) b 
< fb w(x)lf(x) - f(x)I dx < ,lolf - fnll L,oa,b]3 a 

where b = fb w(x) dx, and If - fn II L(a,b -0 ? by the above-mentioned theorem. 
Next, we give a series representation for the error 

(2.24) En+ 1() = G(O) - Gn(O). 

Using (2.17), (2.21), and (2.14), we have 

En 1(9) = f w(x)e Gx[f(x)-f"(x)] dx = f w(x)e iGxRn + 1 (x) dx 
a a 

= Cn+lhn+lbn+1(9) + cn+2[hn+2bn+2(0) + Cn+lhnbn(o)] 

(2.25) + Cn+3[hn+3bn+3(9) + A An+( n+lh) bn1() 

-C + ( A+2B - Bn+2 )hnbn() 

Our discussion of (2.25) is much like that for (2.14) in that only one or possibly two 
terms of the formula will be useful in practice, unless realistic error bounds are 
available for the asymptotic representations of Ck. There is the further complication 
that convergence of (2.25) might be slow. In practice, it is suggested that one 
evaluates Gr(O) for r = n - 2, n - 1, n, . . ., and then uses an extrapolation 
technique, say Aitken's 8 2-process [16]. 

3. Integration of Oscillatory Integrands With Algebraic Singularities. In the 
following we formulate the general scheme of Section 2 for the evaluation of the 
integral 

(3.1) G(9) = j w(x)eixf(x) dx, 

where 

(3.2) w(x) = (1 - x)a(1 + x), a > -1, f8 > -1. 

Here the pertinent orthogonal polynomials are those of Jacobi, notated as Pn(a9l(X). 
In Section 2 we assumed that f(x) is analytic in [-1, 1] and that it could be 

expanded in a series of the orthogonal polynomials {q,(x)} and that this series 
converges uniformly to f(x) in [-1, 1]. In the case of Jacobi polynomials, the 
analytic restriction can be relaxed in virtue of theorems by Natanson [17] and 
Prasad [18]. 

The pertinent definitions and results needed for Jacobi polynomials can be 
found in Erdelyi et al. [19] and Luke [6]. The formulas for f(x), Ck, fn(x), dkn etc. 
follow from the corresponding expressions in Section 2. When the orthogonal 
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polynomials are those of Jacobi, some rather elegant representations for bk(O) can 
be given. From the work of Luke [20, Vol. 2, p. 29, Eq. (1)], 

(3.3) bk(() = + X)k IF1(k + /3 + 1;2k + X + 1;2iO), X = a + / + 1, 

and from this same reference, p. 48, Eq. (8), 

bk(O) - i2(k + a + 1/2) 
Oct+1/2 (k + X) k 

(3.4) , (-i)m(m + k + a + 1/2)(2k + 2a + I)m(a-3)m 

m-O (2k + X + l),M! 

Jm +k +a + 11209), 

The latter can be simplified considerably if a = / whence X = 2a + 1. In this 
instance 

(3.5) bk(O) = k1 '/2 (2k + 2a + i)r(k + 2a + 1) J++1() 

(29)a+ l/2r(k + a + 1) 

If a = ?,-2 and 2 in (3.5), we get the cases of Legendre, Chebyshev of the first 
kind and of the second kind, respectively. Thus 

(3.6) bk(O) - 
ik /2 (2k + 1) 

Jk+1/2(0) (Legend) 
(29 )1/2 k129 Lgnr) 

bk(@) = 
2ekikk! ( o), eO = 2I ek= 1, k > 0, 

(3.7) bk(9) 
- (1/2)k 1f() 

(Chebyshev of the first kind), 

bk(G) - 2ik (k + 1) (k + 1)! J+IO 

(3.8) 0(3/2)k 

(Chebyshev of the second kind). 

Equations (3.6)-(3.8) are the same as those given by Patterson [10]. 
The recursion formula for bk(U), 

bkl(O) = (k + X)(2k + X + 2) 
bk+1(0) (k + a + 1)(k + /3 + 1)(2k + X - 1) 

(3.9) i(2k + X - 1)(2k + X + 1) 1b() 

+ (k + X-1)(k + X)(2k + X + 1)(2k + X + 2) b (0) 
(k + a + l)(k + / + 1)(2k + X-2)(2k + A-1) k 

follows from Luke [20, Vol. 2, p. 157, Eqs. (17), (18) and p. 153, Eq. (4)]. 
If a = /3, X = 2a + 1, then (3.9) simplifies to 

bk+ (9) i(k + 2a + 1)(2k + 2a + 3) b 

(3.10) (k + 2a)(k + 2a + 1)(2k + 2a + 3) b (9) 

(k a)(k a a t 1)(2k+ f2a - 1) k-I 

which is obviously akin to the recursion formula for J4(x) in view of (3.6)-(3.8). 
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With x = 1 and x = -1 in the expansion for ei9x, see (2.19), we get the respective 
normalization relations 

(3.11) 2 (a k! bk(O) = ei?, 
k=O 

(3.12) E kt - )k bk(O) = eiO. 
k=O 

If a = /3, X = 2a + 1, then put x = 0 in the expansion for ei'x and obtain 

(. (3)k)r(k + ')r(2k + a + 1) 
(3.13) E2 -- --b2k(o) =1 

k=O /2 r(k + a + 1)(2k)! 
We now turn to the evaluation of the coefficients bk(O) by use of the recurrence 

formula used in the backward direction together with one of the normalization 
relations (3.11)-(3.13), as appropriate. 

This technique, also known as the Miller algorithm, proceeds as follows. Con- 
sider the second-order difference equation 

(3.14) y(n) + CI(n)y(n\+ 1) + C2(n)y(n + 2) = 0, CI(n), C2(n) # 0, 

where n is an integer > 0. Let N be a large positive integer. Put 

AN+1(N) = 0, AN (N) = 1, 

and calculate An(N) for 0 < n N - 1 from (3.14) with y(n) replaced by An(N), 
i.e., 

(3.15) An(N) + CI(n)An+1(N) + C2(n)An+2(N) = 0. 

Suppose we are given the convergent series (called a normalization relationship) 
0 

(3.16) 1 = 2 L(k)yl(k), 
k=O 

where yI(k) is the desired solution of (3.14). Define 
N 

(3.17) Q(N)= 2 L(k)Ak(N), 
k=O 

and 
(3.18) rn(N) =An(N)12(N) 

Notice that it is no loss of generality to assume the sum (3.16) is 1, since L(k) can 
always be so normalized. The Miller algorithm is then described by the following 
theorem due to Gautschi [21]. 

THEOREM 2. Let there exist a solution of (3.14), y2(n), which is linearly independent 
ofyl(n) with the property that y2(n) is not zero for n sufficiently large, and 

(3.19) lim y,(n) -0, 
i 

yl(n + 1)n 
(1y2(n) =0, lim y(n + 1 L(k)y2(k) = 0. n--0 Y2(n) n--o Y2(n + 1) k-0 

Then 

(3.20) lim rn (N) = y1(n), n = 0, 1, 2. 

When the latter holds, we say that the backward recursion process is convergent. 
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If Yl(O) can be readily computed, and Yi(O) # 0, then we can use this value as a 
normalization relation. In this 'event, (3.16) holds with L(k) = 0 for k > 1, and 
L(O) = l/ly(O). Then in place of Theorem 2, we have the 

COROLLARY. Let y2(n) be as in Theorem 2 but with (3.19) amended to read 

(3.21) lim y,(n) = O. 
n-o oy2(n) 

Then 

(3.22) lim An(N) yl(1) = y,(n), n = 0, 1, 2, .... 

Proof that the backward recurrence process converges for the case at hand is 
readily established by examining the Puiseux diagram of (3.9), see Gautschi [21], 
which shows that (3.9) has a solution that grows rapidly to oo and another one that 
grows equally rapidly to 0 as k - oo. It suffices to show, therefore, that bk(O) -O 0 
as k -> oo (or only that bk(O) is bounded). If f(x) is analytic in a domain containing 
[-1, 1], this follows from Cauchy's formula 

f' w(x)qk(x)f(x) dx = I f(z)f' w(x)q(x) dx, 
1 2-ri I~~- z -X 

for, as is well known, the inner integral tends to zero geometrically as k - oo. Since 
hk- = 0(k) as k -> o, it follows that bk(O), see (2.18), tends to zero as k .) oo. 
Proof of the results corresponding to the second condition in (3.19) for any of the 
normalizations (3.11), (3.12) is straightforward and we omit the details. 

An alternative proof concerning the behavior of the two solutions of (3.9) can 
also be deduced by solution of the difference equation after the manner discussed 
by Wimp [22], [23]. Further, an alternative technique for the evaluation of bk(O) 
according to (3.3) can be deduced from a result given by Luke [24]. This analysis 
leads to the statement 

(3.23) bk(O) = 2'-N(ie9/k)k[1 + 0(k-1)], k -> 00. 

Lyness [5] studied the evaluation of (3.1). No use is made of orthogonality. His 
approach is an extension of the technique developed in Lyness [3], [4] to evaluate 
(3.1) when w(x) = 1. In the latter papers, trapezoidal sums of the form . Of(x1) 
and values of f'(xi) at x = -1 and x = 1 are required. These same features carry 
over to the case w(x) # 1. In the more general case, values of the generalized zeta 
function t(s, y) are also needed. The results are quite complicated and not as 
simple as the approach of this paper. 

4. Numerics. In this section we present a numerical example to illustrate the 
effectiveness of the schemes developed in this paper. Consider the integral 

(4.1) G(9) 1/2 - dx. 
Jox "(I + x) 

Notice that the integrand contains a square root singularity at x = 0. In the 
notations of the previous section a = 0 and /8 = -2. From the work of Luke [20, 
Vol. 2, p. 31, Eq. (1)], 
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00 

(1 + x)= ckRk ')(X), 

(4.2) k=O 

Ck = ()k k! 
2FA(k+ 3 + 1, k + 1; 2k + A + 1;-1), X= a+ /3+ 1, 

(k + X)k 

where Rk(ca8)(x) = Pk(a`8)(2x - 1) is the shifted Jacobi polynomial. Also from the 
same reference p. 159, Eqs. (26)-(28), 

(k + I)ck (k + A)(2k + A + 3) {(k + 2)(k + /3 + 2)(2k + A + 1) 
-(k + 1)(k + /3 + 1)(2k + A + 3) 

(4.3) + (2k + A + 1)(2k + A + 3)}ck+l 

+(2k + X)(2k + A + 1)(k + a + 2)(k + / + 2) 2= 0 
(k + A)(2k + A + 3)(2k + A + 4) 

Put x = 0 in (4.2) to get the normalization relation 

4 (_)k(, + O)k 

(4.4) k=O~~I k Ckl k =0 

which can be effectively used with (4.3) in the backward direction to generate the 
Ck's. These data for a = 0 and 18 = -2 and N = 15 are presented in colunm A of 
Table 1. Again, from the work of Donaldson and Elliott [13], we have 

(4.5) gk(- k)l/223/4+a/2U2k+X u = 21/2 - 1. 

Numerical values of Ck based on this formula with a = 0 and 18 = - 2 are posted in 
column B of Table 1. In Table 2 the values of bk(O), as developed by use of the 
backward recursion scheme, are posted. 

TABLE 1 

The coefficients ck 

Ck 

Ic A B 

0 0.78539 81634 
1 -0.35398 16340 -0.32916 08838 

2 0.08295 94999 0.07986 78230 

3 -0.01722 10c08 -0.01678 2865 2 

4 0.00339 04936 0.00332 49422 

5 -o.00064 79078 -0.00063 78047 

6 o.0012 14617 0,00011 98746 

7 -0.00002 24678 -0.00002 22151 
8 0.00000 41L153 0.00000 40747 

9 -0.00000 07481 -0.00000 07415 
10 0.00000 01352 0.00000 01341 
11 -0.00000 00243 -0.00000 00241 

12 0.00000 03043 0.00000 00043 
13 -o.ooooo 00ooo8 -000000 00008 

14 0.00000 00001 0.00000 00001 
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TABLE 2 

The coefficients bk(O) by use of the backward 

recursion method a = 0,/3 = -2, 9 = 4 and N = 15 

bk(e) 

k Re-al IrnagLnary 
0 0.23073 07312 0.40238 82447 
1 -1.66356 81468 _.-17686 96566 
2 0.31187 23652 -.1.29526 37469 
3 0.55690 64306 0.16688 53441 
14 -0.05528 231417 0.16598 48931 
5 -0. 03792 78179 -0.01345 16322 
6 0.00260 12917 -0.00703 38286 
7 0.00109 82646 0.00041 85123 
8 -0.00005 77316 0.00014 81282 
9 _0.00001 75877 ..00000 69760 

10 0.00000 07503 -0.00000 18653 
13.1 0.00000 01788 0.00000 00727 
12 -0.00000 000064 0.00000 00156 

13 -0.00000 00013 -0.00000 00005 
14 0.00000 00000 -0.00000 00001 

As previously noted, bk(O) can be easily calculated from a series given by Luke 
[24]. With 9 = 4, 20 terms of this series gave essentially the same values in Table 2. 
Substituting the values of ck and bk(O) in the formula (2.17) and summing the first 
twelve terms with a = 0,13 = - I and 9 = 4, we get 

(4.6) G(9) = 0.60223 43648 + 0.63285 94815i. 

Next we calculate the zeros of R,(0j112)(x) and the dk, 's which are needed to 
compute the approximation Gn(9) in (2.21) as well as the error estimates En+ () in 
(2.25) for n = 3. We post these data in the following tables. 

TABLE 3 

Zeros of Rn?+ l1/2)(x) and values of dk,n, and Gn(9), n = 3, 9 = 4 

k dk n 
, . X ~~~~~~~~~~~~~~~~~~I _ 

0 0.03364 82681 0,78539 72062 
1 0.27618 43139 -0.35397 20627 
2 0.63467 74762 0.08288 62799 

3 0.92215 66085 -0.01671 09435 

G3(e) = 0.60228 5875 + 0.63282 52379 i 

Error = -0.515(104) + 0.342(10-4) i. 
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It is of interest to know the convergence properties of the error representation 
(2.25) for our example. This is readily done since the ck's are known rather 
precisely. In the following table we illustrate computation of E" (O) using 1, 2, 3 
and 4 terms. 

TABLE 4 
The error estimates E+,1(9), n = 3, 9 = 4 

No. of Terms En+lte) 

1 -0.221 (10-4) + 0.622 (10-4) i 

2 -0.634 (10-4) + 0.539 (10-4) i 

3 -0.583 (10-4) + 0.327 (1C0-4) i 
4 -0,510 (10-4) + 0.335 (10-4) i 

It is clear that at best three terms give a fair appraisal of the accuracy. As 
previously noted, in practice the ck's are usually not known. Even if known 
asymptotically, only one or possibly two terms of (2.25) can be used unless rather 
precise information is available on the remainders in the asymptotic formulas. As 
indicated by the example, use of only one term gives at best an order of magnitude 
estimate of the error. Further, convergence of (2.25) is slow and use of (2.25) does 
not improve as n increases. This indicates that one should have available one or 
more a posteriori approaches to estimate the error and improve convergence. That 
is, compute GJ(9) for several successive values of n and use these data to get 
estimates of the error and improve the accuracy of the approximations obtained, 
say by use of Aitken's 82-process. This we presently do after tabulating further 
approximations for GJ(O). 

TABLE 5 

G" (9) for various n and the true errors 

G() Gn(e ) 

n Iea- Irginary 

3 0.60228 58752 0.63282 52379 
4 0.60223 35930 0.63285 77309 

5 0.60223 43191 0.63285 94967 

6 0.60223 43651 0.63285 94825 

7 0.60223 43648 0.63285 94815 

True Error 
n, Real imagnary 

3 -0.515 (2.0 )4 0.342 (10-4 3 -0-515 (104 Xt2t 4 
4 0.077 (10-5) 0.175 (10-5) 
5 0.456 (10-7) -0.153 (10-7) 

6 _0.032_ (10-8) -o.1o4 (l0-8) 
7 0 0 
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Since G"(9) converges, an often useful indicator of the error in GJ(9) is 
G+ (0) - Gn(9). Let N be the largest value of n for which Gn(9) is calculated. 
Then a better estimate of the error in Gn(O) is GN(O) - Gn(O). Neither of these 
techniques can be guaranteed. However, they work pretty well in practice, espe- 
cially if the sequence Gn(O) converges with sufficient rapidity. This is the situation 
for the case at hand. 

With the values of Gn(O), n = 3(1)7, we apply Aitken's 82-process to three 
consecutive sums, Gn -2(0), Gn _ ,(0) and Gn(9) for n = 5(1)7. We post the results in 
Table 6. 

TABLE 6 

Gn(0), improved values by application of the Aitken's 

s 2-process to { Gn()} 

~(e) Gn( 
n Peal Img1nary 

5 0.60223 43767 0.63285 94817 

6 0.60223 43648 0.63285 94813 

7 0.60223 43648 0.63285 94835 

Further improvement is obtained by applying the 82-process to the sequence 
{ G,(0)}, etc. We omit the numerics. 

5. Some Other Expansions. In this section we discuss some related but special 
expansions discussed by other workers. 

Suppose we want to evaluate f'I f(x) dx, where f(x) is continuous in [-1, 1], by 
the techniques previously considered. Here 9 = 0 and the relevant orthogonal 
polynomials are those of Legendre since w(x) = 1. In this event, we need the zeros 
xa of P +I(x), P+ I(xa) etc. to compute the coefficients dk,. Actually only do0 is 
required. To avoid evaluation of xa and those quantities dependent on xa, the idea 
of Clenshaw and Curtis [14] is to approximate f(x) by f,(x) where fn(x) is an 
interpolatory polynomial whose points of collocation are the zeros of the 
Chebyshev polynomial of the first kind Tn+ (x), for in this situation the zeros and 
other needed data are simply expressed. 

Some ideas of a similar character has been suggested for the evaluation of 

(5.1) G(9) = f1 
elOxf(x) dx. 

This is a special case of (3.1) where w(x) = 1. As previously noted, Bakhvalov and 
Vasileva [81 express f(x) in series of Legendre polynomials. In this event, evaluation 
of (5.1) obtains once we compute bk(0) by use of (3.6). In general, all of this has 
been generalized in Section 3. 

Piessens and Poleunis [9] and Patterson [10] choose to express f(x) in a series of 
Chebyshev polynomials of the first kind for the reasons previously stated. But in 
this event, one must know 

(5.2) vk(O) = f Tk(x)eIx dx 
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to compute (5.1). Piessens and Polenius show that (5.2) can be expressed as an 
infinite series of Bessel functions. The coefficients vk(O) can be shown to satisfy a 
three-term inhomogeneous recurrence formula and this can be used to evaluate 
these numbers. Indeed, this notion can be generalized to get an inhomogeneous 
recurrence formula for the evaluation of 

(5.3) Wk a(9) - f eiexPka.)(x) dx, 

so that evaluation of (5.1) follows once the coefficients for the expansion of f(x) in 
terms of Pk,fi )(x) are known. This recurrence formula is omitted here. It is given in 
a thesis by Ting [25]. 

Littlewood and Zakian [11] extend the methods of Piessens and Poleunis [9], and 
Patterson [10]. The idea is to approximate f(x) by a finite series of Chebyshev 
polynomials of the first kind. Here the Chebyshev coefficients dkfl are easily 
determined. Now suppose we approximate f(x) by a finite series of Legendre 
polynomials of the same degree as the Chebyshev case and equate these two series. 
Then we can express the Legendre coefficients ek n in terms of dk n. Then evaluation 
of (5.1) is quite simple in view of (3.6). The main feature of this approach is to 
retain the advantage of the Chebyshev approximation for f(x) and avoid the 
evaluation of infinite series of Bessel functions as noted above. The above ap- 
proaches have merit only to the extent that f(x) is approximated by a series of 
Chebyshev polynomials. However, there is little merit insofar as computations 
relating to bk(O) are concerned since in all cases one must compute Bessel 
functions. On this point, the authors preferred to suggest calculation of the same by 
use of the backward recursion scheme. But, we have shown that bk(O) can always 
be calculated in this manner for any a and /8 greater than -1. 

In the above treatments w(x) = 1. For arbitrary w(x) of the form (3.2), the 
Littlewood and Zakian technique can be generalized to get another prescription to 
evaluate (2.20). The point is that given the coefficients in I' k- dk, Tk(x), we can 
derive a recursive process to get the coefficients in Xk. ek,Pl.(a(x). Then once 
we determine the appropriate bk(O), evaluation of GJ(9) follows from (2.21). The 
schema to get the ek "'s just noted will be the subject of another paper to be given 
elsewhere. 

6. Oscillatory Integrals Over Infinite Range. In the following we consider evalua- 
tion of (1.2) where a = 0, b = oo, w(x) = e-x, and the analogous orthogonal 
polynomials are those of Laguerre (generalized), and where a = -oo, b = oo, 
w(x) = e-2, and the corresponding polynomials are those of Hermite. All of our 
results are formal since convergence criteria are rather imprecise when compared 
with the corresponding Jacobi situation. 

The generalized Laguerre polynomial can be defined as a limiting form of the 
Jacobi polynomial. Thus, all needed formulas can be deduced from the results for 
the latter polynomials by use of this confluence limit. 

We consider 

(6.1) G(9) = f w(x)eixf(x) dx, 
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where f(x) is real, analytic in (0, oo) and for all sufficiently large values of x 

(6.2) If(x)I 1 ex for somep > 0. 
x a+po+l 

The formulas for Ck, dk," etc. follow from (2.8)-(2.11), while those for G(O) and 
G,(O) come from (2.17) and (2.21). For the present case, 

bk(O) = hlf X ae-(l -i)xLkxa)(x) dx 

(6.3) = i k+a+1 

=ia+ l0kf I 

Quite often, the technique described in this section is poor because we are dealing 
with an infinite span and f(x) may not have sufficient decay characteristics. For an 
example, see Patterson [10]. To improve the situation, Patterson suggests that we 
break the integral into the ranges [0, a] and [a, oo], thus 

(6.4) G(0) = J xae-Xeixf(x) dx + xae-xei9xf(x) dx, 

or 

G(9) = (a/2)a+l exp{-a(l - iO)/2)1 (1 + x)aeie/af( a( 
+ 

x)) dx 

(6.5) + f (x + a)ae(x+a)eie(x+a)f(X + a) dx. 

The first integral can be evaluated by the scheme in Section 3 while the second 
integral is of the type considered in this section. Note that the decay properties of 

f(x + a) are better than those of f(x), but not materially so if f(x) only decays 
algebraically. In practice, it is perhaps best to evaluate the infinite integral in (6.4) 
for large a by asymptotic methods. 

Hermite polynomials are but a special case of Laguerre polynomials. We record 
only the formula 

bk(6J) = h,Jj e_X2eiXHk(X) dCH 

(6.6) 
00 

= (9/2)k exp(-_2/4)/k!. 
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